Maximizing the solar to H2 energy conversion efficiency of outdoor photobioreactors using mixed cultures

نویسندگان

  • Halil Berberoğlu
  • Laurent Pilon
چکیده

A numerical study is presented aiming to maximize the solar to hydrogen energy conversion efficiency of a mixed culture containing microorganisms with different radiation characteristics. The green algae Chlamydomonas reinhardtii CC125 and the purple non-sulfur bacteria Rhodobacter sphearoides ATCC 49419 are chosen for illustration purposes. The previously measured radiation characteristics of each microorganism are used as input parameters in the radiative transport equation for calculating the local spectral incident radiation within a flat panel photobioreactor. The specific hydrogen production rate for each microorganism as a function of the available incident radiation is recovered from data reported in the literature. The results show that for mono-cultures, the solar to H2 energy conversion efficiency, for all combinations of microorganism concentrations and photobioreactor thicknesses, fall on a single line with respect to the optical thickness of the system. The maximum solar energy conversion efficiency of mono-cultures of C. reinhardtii and R. spaheroides are 0.061 and 0.054%, respectively, corresponding to optical thicknesses of 200 and 16, respectively. Using mixed cultures, a total conversion efficiency of about 0.075% can be achieved corresponding to an increase of about 23% with respect to that of a mono-culture of C. reinhardtii. It has been shown that the choice of microorganism concentrations for maximum solar energy conversion efficiency in mixed cultures is non-trivial and requires careful radiation transfer analysis coupled with H2 production kinetics taking into account the photobioreactor thickness. a 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indoor versus outdoor biohydrogen photoproduction by Rhodopseudomonas palustris 42OL

Hydrogen is a promising energy carrier of the future, nevertheless biohydrogen technologies are still in their infancy. If biohydrogen systems are to become commercially competitive, they must be able to synthesize hydrogen at rates that are sufficient to power fuel cells of a sufficient size to carry out practical work [1]. Before the concept of hydrogen economy becomes a reality, a safe, econ...

متن کامل

Modeling, Optimization and exergoeconomic analysis a multiple energy production system based on solar Energy, Wind Energy and Ocean Thermal Energy Conversion (OTEC) in the onshore region

In the present study, investigated an energy production system using three types of renewable energy: solar, wind and ocean thermal energy with climatic conditions and close to areas with high potential for the OTEC system, Has a good position in terms of wind speed and solar radiation, used them as energy sources. The proposed system is designed and evaluated based on the total daily electrici...

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

Materials, geometry, and net energy ratio of tubular photobioreactors for microalgal hydrogen production

We estimate the energy content, the operational energy inputs, and the net energy ratio (NER) of an industrial tubular photobioreactor used for the photosynthetic production of H2 by microalgae. The calculated H2 output of the photobioreactor is based on a range of algal photosynthetic H2 generation efficiencies, and on the application of standard theory for tubular solar collectors. Small diam...

متن کامل

Simple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs

This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010